Summary test procedures used to test a weighbridge using substitution

	test.
	Method B-exact value (a) Remove the standard weights. For electronic instruments make sure that a suitable load (e.g. 10e) is left on the load receptor to avoid zero-tracking. (b) Leave ΔL on the load receptor. (c) Replace the standard weights with substitution material. The substitution material should be placed as close as possible to the same position on the load receptor. Continue to add substitution material to the substitution load in sufficiently small increments (\leq $0.1 e)$ until the indication changes up and stabilises at the same indicated value determined previously. (d) Remove ΔL. The substitution material ($L_{\text {sub }}$) will then be equal to the standard weights (L) it is replacing, i.e. $L_{\text {sub }}=L$. (e) Use Lsub plus standard weights to make the next load required for this test.
VISUAL INSPECTION	Carry out a visual inspection
ZERO	1. Activate the zero-setting device. (a) Load the instrument using a standard weight that is within the zerosetting range (this range varies between 0 to 4% of Max, in most cases this is $\pm 2 \%$ around zero). (b) Add additional standard weights to take the total load just below the next changeover point. 2. Re-set the indication to zero using the zero-setting device. 3. Apply a suitable load (e.g. 10e) to the load receptor to avoid zerotracking. 4. Apply an additional $0.25 e$. If the indication: - remains unchanged, go to step 5; - changes and stabilises at $+1 e$ from the original indication: FAIL 5. If the indication remains unchanged in step 4 , apply an additional $0.5 e$. If the indication: - changes and stabilises at $+1 e$ from the original indication: PASS - remains unchanged: FAIL
ZERO TARE	1. Activate the zero-setting device. (a) Load the instrument a weight that is within the tare setting range. (b) Add additional standard weights to take the total load just below the next changeover point. 2. Re-set the indication to zero using the tare-setting device. 3. Apply a suitable load (e.g. 10e) to the load receptor to avoid zerotracking. 4. Apply an additional $0.25 e$. If the indication:

	- remains unchanged, go to step 5; - changes and stabilises at $+1 e$ from the original indication: FAIL 5. If the indication remains unchanged in step 4 , apply an additional $0.5 e$. If the indication: - changes and stabilises at $+1 e$ from the original indication: PASS - remains unchanged: FAIL
DISCRIMINATION	1. Zero the instrument. 2. Apply a load to the load receptor. 3. Apply additional standards weights of $0.1 e$ until the indication changes up and stabilises. 4. Record this indication. 5. Gently apply a load of $1.4 e$. The indication should increase by $1 e$ to the next scale interval. 6. Determine whether the instrument has passed or failed
REPEATIBILITY	1. Drive the substitution load on to the weighbridge and record the indication. 2. Determine the position (P) by adding small weights (delta loads) $\mathrm{P}=\mathrm{I}+0.5 \mathrm{e}-\Delta L$ 3. Repeat step 2 twice more 4. Check if the difference between any two readings is within the absolute value of the MPE.
ECCENTRICITY	Using Forklift as the load 1. Placing standards weights equal to or greater than the weight of the forklift, provided it is within 0.3 t . 2. Use method A above to determine the value of forklift. 3. Drive forklift over each section recoding the indication. 4. Determine if each section is within MPE
ACCURACY	1. Apply either standard weights or substitution materials at each load point determined earlier. 2. Determine the error at each load. 3. Determine if each indication is within MPE For a 60 t weighbridge with 20 t of standard weights and e value of 20 kg Example of suitable test points Min $=400 \mathrm{~kg}$ standard weights 10 t -= standard weights $20 \mathrm{t}=$ standard weights 20 t substitution 1 (truck) $40 \mathrm{t}=$ substitution $1+20 \mathrm{t}$ standard weights 40 t substitution 2 (2 trucks) $60 \mathrm{t}=$ substitution $2+20 \mathrm{t}$ standard weights

